Hydroacoustics in the USGS: From Research to Operational Tools

Kevin Oberg

Scientist Emeritus, USGS | Oberg Hydroacoustics

Hydroacoustics in the USGS: From Research to Operational Tools

Experience with Hydroacoustics
Lessons Learned
Sustaining Innovation

Kevin Oberg

Scientist Emeritus, USGS | Oberg Hydroacoustics

First ADCP River Discharge - 1982

Ametek/Straza **DCP 4400 ADCP** Min bin size (cm) Vel. Std. Dev. (cm/s) Update rate (p/s)Depth to first bin (m) Total Weight (kg)

-O-LPF-A/D

AL PROCESSOR NO

NAL PROCESSOR NO. 3

AL PROCESSOR NO

100 1,100 8 ~3.6 90

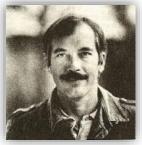
HP 85						
	DCP-4400	USGS DATA	DIFFERENCE			
Average Speed,f/s	4.91	4.67	5.1%			
Average Speed,m/s	1.49	1,42				
Average Depth,feet	59.2	54	9,2%			
Average Depth,meters	18.05	16.5				
Discharge Area (sq feet)	142,523	150,000	-5.2%			
Discharge Area (sq m)	13,252	13,942				
Discharge (cu ft/sec)	701,904	703,916	-0.3%			
Discharge (cu m/sec)	19,891	19,948				

N.

GPIB ONTROL

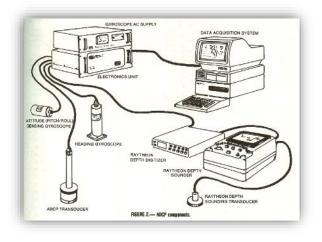
> DCP4400 DOPPLER C PROFILER BLOCK

FREQ


XMT MASTER

IEEE 488 BU COMPUTER

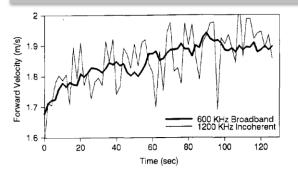
RD Instruments Narrowband ADCP



- CA District bought prototype
- Mike Simpson, others tested NB ADCP in SF Bay & Delta.
- Mike wrote software for computing discharge in real time (ADDMS)

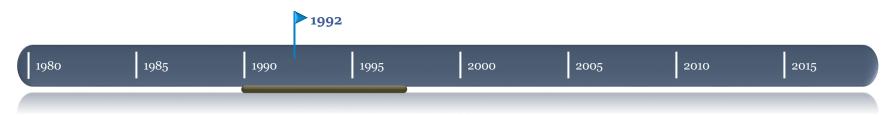
<u>Limitations</u> *"Average depths < 4.5 m*"

"Irregular cross sections (unless vessel is slowed sufficiently to allow depth definition by ADDMS)"


Min bin size (cm)	100
Vel. Std. Dev. (cm/s)	13.4
Update rate (p/s)	8
Depth to first bin (m)	~3.6
Total Weight (kg)	2 7
Length (m)	1.07

RD Instruments Broadband ADCP

Performance of a Broad-Band Acoustic Doppler Current Profiler Blair H. Brumley, Ramon G. Cabrera, Kent L. Deines, and Eugene A. Terray


Min bin size (cm)	25
Vel. Std. Dev. (cm/s)	6.5
Update rate (p/s)	2
Depth to first bin (m)	~1.8
Total Weight (kg)	27
Length (m)	1.0

COMMAND	DESCRIPTION	PAG
?	SHOWS COMMAND MENU	C-7
<break> or ma</break>	INTERRUPTS OR WAKES UP ADCP AND LOADS LAST SETTINGS USED	C-9
BAnnn	BT EVALUATION AMPLITUDE MINIMUM (1-255 counts)	C-10
BCnnn	BT CORRELATION MAGNITUDE MINIMUM (0-255 counts)	C-10
BDnnn	BT DELAY BEFORE REACQUIRE (0-999 ensembles)	C-10
BEnnnn	BT ERROR VELOCITY MAXIMUM (D-9999 mm/s)	C-11
BEnnon	BT DEDTH OLIESC (0-AUTO or 1 TO SEE25 dm)	0.11

EX1011 Coordinate transformationWS25 Cell size (cm)WV170 Ambiguity velocity (cm/s)BA30 Bottom amplitude

	En i En i en	0.0
CPnnn	TRANSMIT POWER (0-255 counts)	C-19
CQnnn	TRANSMIT DELAY SELECT (0-127 counts) (NOTE: NOT FULLY IMPLEMENTED	C-19
CRn	RETRIEVE PARAMETERS (0 = user, 1 = factory)	C-20
CS or T	START PINGING	C-20
CTn	TURNKEY OPERATION (0 = off; 1 = Turnkey)	C-22
CXn	TRIGGERED TRANSMIT (0=off: 1=on)	C-22
CY	CLEAR ERROR STATUS WORD	C-23
CZ	POWER DOWN ADCP	C-24
DA	ATMOSPHERIC PRESSURE CORRECTION	C-25
DI	IDENTIFY THE SVP	C-25
DQ	SENSOR POWER ON/OFF TOGGLE	C-26
DS	SAMPLE/DISPLAY DATA SCAN	C-26
EA±nnnn	HEADING ALIGNMENT [PHYSICAL] (LSD = ±0.01; -179.99 to 180.00)	C-27
EB±nnnn	HEADING BIAS [ELECTRICAL/MAGNETIC] (LSD = ±0.01 ; -179.99 to 180.00)	C-28
ECnnnn	SPEED OF SOUND (1400-1600 m/s)	C-30
EDnnnn	DEPTH OF TRANSDUCER (0-65535 decimeters)	C-30
EHnnnn	HEADING (LSD = 0.01; 000.00 to 359.99)	C-30
EP±nnnn	PITCH (LSD = 0.01 ; -20.00 to +20.00)	C-31
ER±nnnn	ROLL (LSD = 0.01 ; -20.00 to +20.00)	C-31
ESm	SALINITY (0 to 40 parts per thousand)	C-32
ET±nnnn	TEMPERATURE (LSD = 0.01 C; -5.00 C to +40.00 C)	C-32
EXnnnn	COORDINATE TRANSFORMATION (type; tilts; 3-beam; bin mapping)	C-32
EZnnnnnn	SENSOR SOURCE (EC; ED; EH; EP; ER; ES; ET); (0-manual, 1-transducer, 2-synchro)	C-35
PAn	PRE-DEPLOYMENT TESTS	C-36
PCnm	BUILT-IN TESTS (0-heip)	C-36
PDnnn	DATA STREAM SELECT (0 - actual, 1 - almulated, 3-ADCP1, 4-ADCP2, 5-ADCP3, 6-ADCP4, 7-NMEA)	C-38
Pinnnnn	BUILT-IN TESTS (repeat; CPU; clock; timing; demod; loop)	C-38
PM	DISTANCE MEASURING FACILITY	C-39
PSn	SHOW SYSTEM PARAMETERS (0-hard/immware;1-ind idr;2-var idr;3-xdcr mtn;4-ping seg)	C-41

Cost: \$55,000

RD Instruments Rio Grande ADCP

- First 12-volt ADCP
- Based on Workhorse • technology

	<u>WM1</u>	$\underline{WM5}$
Min bin size (cm)	25	10
Vel. Std. Dev. (cm/s)	10	.60
Update rate (p/s)	2	3
Depth to first bin (m)	~1.8	0.5
Total Weight (kg)		6.8
Length (m)		0.20

Cost:	\$23,000)	1997					
1980	1985	1990	1995	2000	2005	2010	2015	

RiverRay and RiverPro & M9/S5

1980

1985

1990

1995

2000

- Multi-frequency
- Auto-adaptive configuration
- Smaller footprint

2005

- Vertical beam for depth measurement
- Bluetooth radio support
- Geo-location info (some models)

2008

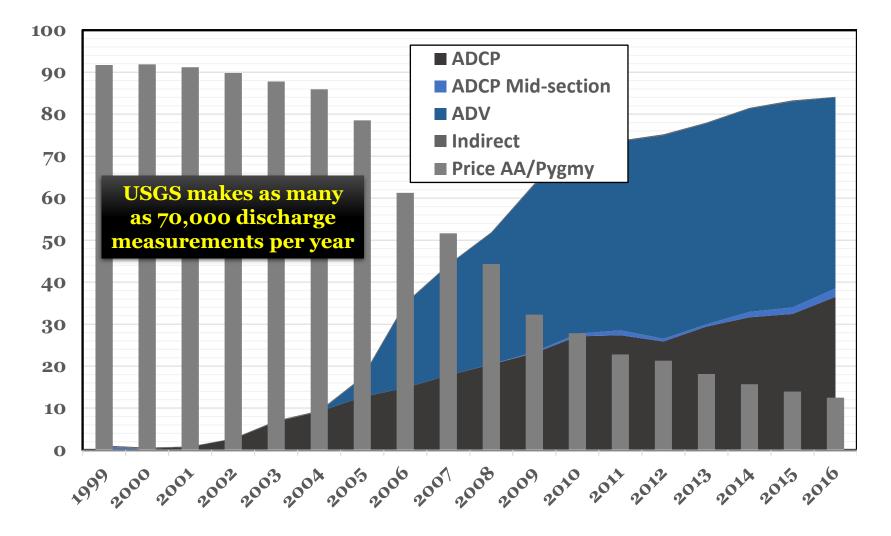
2010

2015

SonTek FlowTracker ADV

Proof of concept

2nd generation

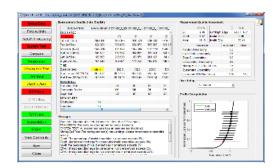

Flowtracker

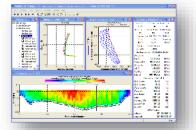
ADV

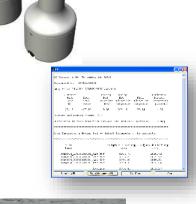
Impact of Hydroacoustics in USGS

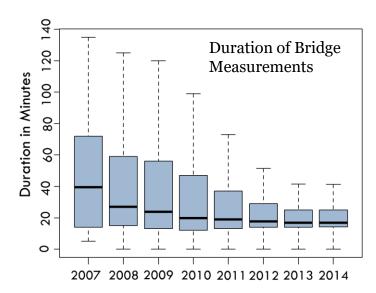
Lessons Learned

What lessons can be learned?


- 1. Technological <u>Innovation</u>
- 2. <u>Incentives</u>
- 3. Standardized <u>Training</u> / Standard Operational <u>Procedures</u>
- 4. Vendor Interaction & Collaboration
- 5. <u>Validation</u> and <u>Quality Assurance</u>
- 6. Dedication of <u>Resources</u> (Staff and \$\$)

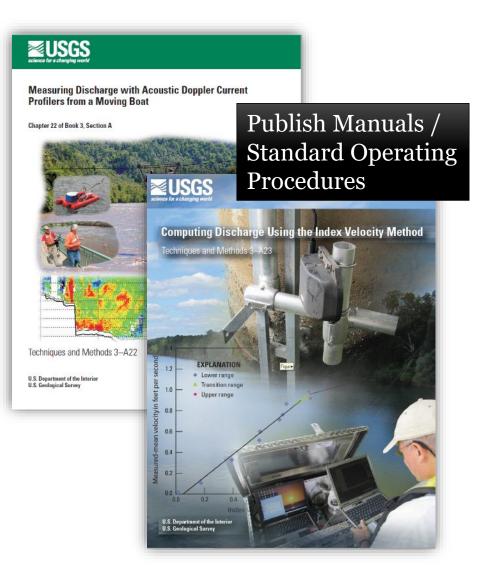

(1) Technological Innovation





(2) Incentives are Necessary

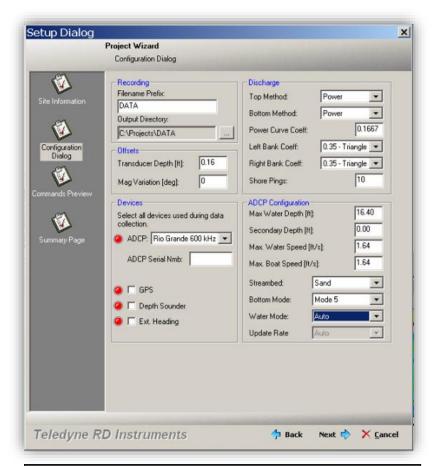
- Economic
- Capability
- Accuracy
- Safety

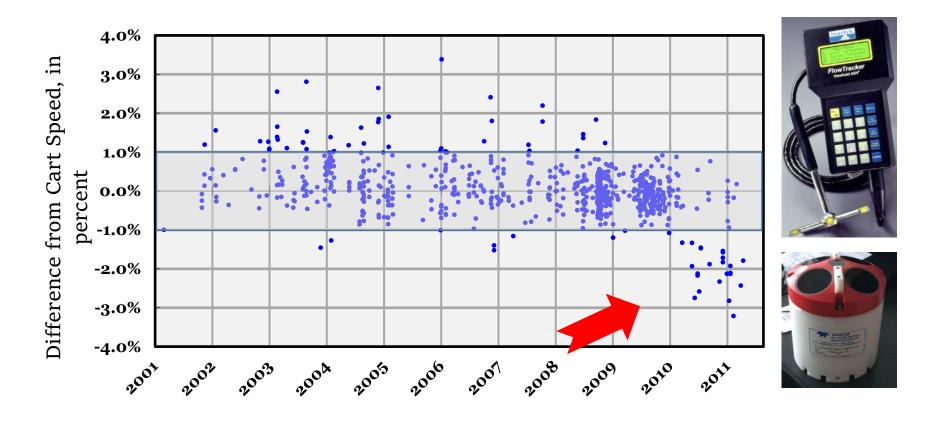


- ADCP usage
 - Cost less (less staff / Qm time)
 - Measure in conditions that were previously not possible
 - More Qms/time
 - Enabled use of in-situ ADCPs (estuaries, unsteady flow, etc.)
 - Moving boat measurements are more accurate than with mechanical meters
 - Safer to use in many situations (e.g. less time on bridges)

(3) Training & SOPs (Manuals)

Training in the Use of the Technology is Essential 10-15 classes per year in USGS


(4) Work with Manufacturers


<u>Regular Meetings</u>

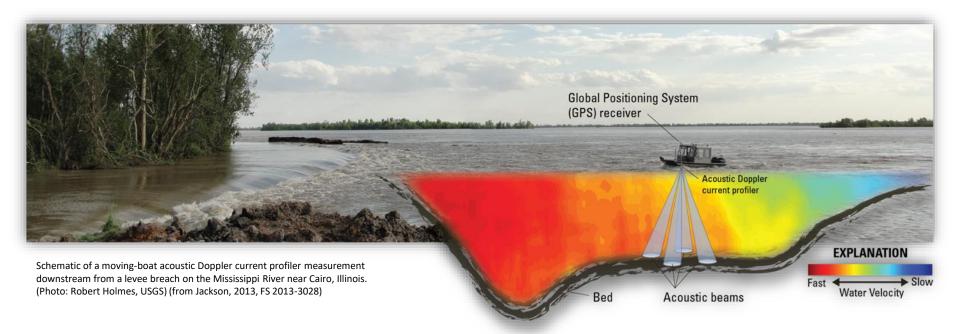
- Discuss requirements
- Learn the technology
- Share problems/bugs

<u>Collaborate to improve the product</u> Example: USGS developed the logic for an ADCP configuration wizard

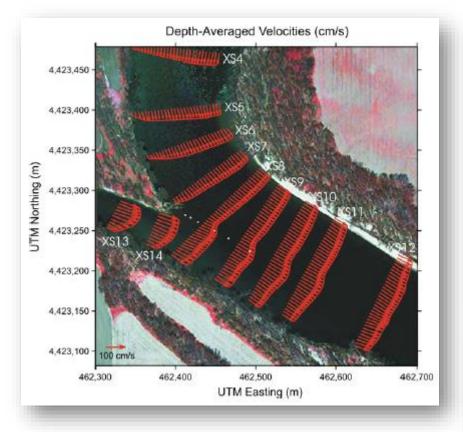
(5) Testing is Essential – Field and Lab

• Error was introduced into manufacturer's calibration facility

• USGS QA program identified the problem


(6) Resources

- Necessary to have staff dedicated to ensure that the things get done
 - **Field Support** (trouble shooting problems via phone, email, etc..)
 - Implement **Training** and Standard Procedures
 - Validate Instrument and software
 - **Interact and collaborate** with vendors consistently
- Funding needed to facilitate desired software and hardware enhancements


Sustaining Innovation

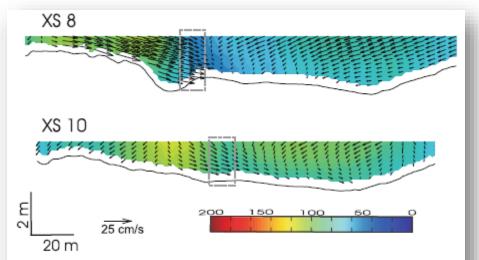
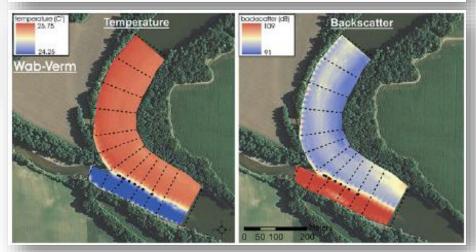
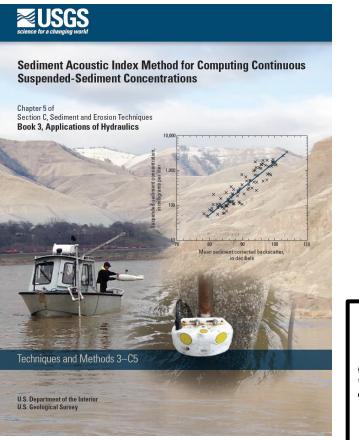
Untapped Potential?

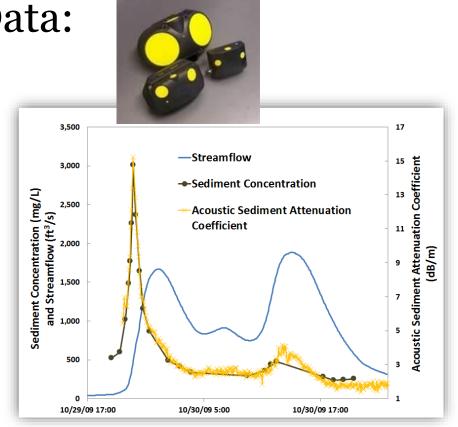
- Every ADCP measurement contains highresolution 3D velocity data
- Most ADCPs are only used for discharge

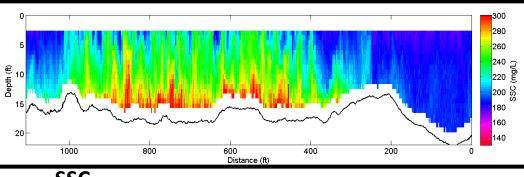
"Other" Data & the Velocity Mapping Toolbox

Velocity Mapping Toolbox (VMT): a processing and visualization suite for moving-vessel ADCP measurements <u>https://doi.org/10.1002/esp.3367</u>

VMT software available at: hydroacoustics.usgs.gov/movingboat/VMT/VMT.shtml


Fig. 15 Primary (contours) and secondary (vectors) velocity components using a zero net discharge frame of reference for cross sections at Wab–Verm confluence (looking upstream). *Grey boxes* indicates approximate locations of stationary ADCP within the mixing interface



Konsoer, K. M., & Rhoads, B. L. (2011)

New Uses for "Old" Data: Sediment Acoustics

SSC

Develop New Tools: QRev Software

Select Data	Measurement Details (Ur	nits: English)					Measurem	ent Quality	Assessme	nt		
	PARAMETERS	MEASUREMENT	074500_0_000	074500_0	074500_0	074500_(COV %			% Q	
Display Units	DISCHARGE					*	Q:	2.96	Left/Right	tEdge: 6	6.63 / 6.34	
D00 (D	Use			V	V		Width:	9.87	Invalid Ce	ells:	0.06	
DCP / Processing	Total Q (ft3/s)	2864.610	1977.855	2910.421	2766.833	2916.6	Area:	11.19	Invalid Er	ns:	39.41	
System Test	Top Q (ft3/s)	624.323	399.653	634.075	595.683	643.2 ≡		Parameter	r	Automatic	User	1
System rest	Middle Q (ft3/s)	1520.212	971.908	1553.502	1447.114	1560.0	Random	Uncertainty		7.3		-
Compass	Bottom Q (ft3/s)	348.572	217.354	364.633	332.741	348.3		ta Uncertair	itv	7.9		
Compass	Left Q (ft3/s)	189.953	219.519	183.979	201.423	184.4		Incertainty		3.9		
Temperature	Right Q (ft3/s)	181.549	169.421	174.232	189.872	180.5		tion Uncerta	inty	0.8		
	TIME							ed Test Unc		1.5		
Moving-bed Test	Duration (sec)	586.5	202.9	192.8	200.5	193.		tic Uncertair		1.5		
	Start Time (03/04/2015)	09:50:32	09:47:00	09:50:32	09:53:53	09:57:		d 95% Unce		12.0	12.0	
User Input	End Time (03/04/2015)	10:00:55	09:50:23	09:53:45	09:57:14	10:00:						
	REFERENCE						User Ratin	g				
Depth Filters	Navigation Ref		BT	BT	BT	BT		Not Rat	ed	-		
BT Filters	Composite Tracks		Off	Off	Off	Off						
BTFilters	Depth Ref		BT	BT	BT	BT	Profile Ext	rapolation				
GPS Filters	MOVING-BED											
OFOTHLEIS	Moving-bed	No					1_					
Select Reference	Correction	No				+	ed	Au		- 1		
		m					Streambed	Se	lected		_ 1	
WT Filters							t di			_	= I	
	Messages						ق 0.6			\mp	=	
Extrapolation	Transects: Duration of se					<u>^</u>	20.0				-	
	TRANSECTS: Transects SYSTEM TEST: All syst						eourtsio 0.4					
Edges	Moving-Bed Test: The m					mine -	ts 0.4		-		- 1	
	validity;					=				_		
View Comments	Depth: The percentage o						Normalized		_		-	
-	Depth: Interpolated disch				ds 3%;		E I			/	_	
Save	bt-All: The percentage of BT-All: Interpolated disc				ds 5%:		ž "		\sim			
Close	BT-All: Interpolated disch						0		0.5	1		

QRev is used by many agencies around the world for processing ADCP discharge measurement data.

- Manufacturer independent
- Improve efficiency of data review and ensure consistency
- Automate data screening algorithms, better data interpolation
- Automate data quality checks and feedback
- Assist user with uncertainty estimation
- Finalize Qm in the field

QRev User's Manual

https://hydroacoustics.usgs.gov/software/QRev_Users.pdf

Thanks for listening!

Thanks also to whoever shared this photo!

Questions?

Kevin Oberg Oberg Hydroacoustics

kevin@hydro-acoustics.com **@**Hydro_Acoustics https://hydro-acoustics.com/